Bildverarbeitungslösungen CV-600
Produktfamilien-Verschlagwortung |
---|
Bildverarbeitung Komplettlösungen der Bildverarbeitung zur Qualitätskontrolle, Prozesskontrolle, Positionsbestimmung Kundenspezifische Bildverarbeitungslösungen Bildverarbeitungslösungen für kundenspezifische Aufgaben |
Funktionsprinzip |
Der erste Schritt ist die Bildaufnahme des beleuchteten Objektes durch die Kamera. Dieses Bild wird anschließend durch einen Framegrabber erfasst und in digitalisierter Form dem PC-Rechner zur Auswertung übergeben. Im nächsten Schritt wird durch Vorverarbeitungsalgorithmen die Unterscheidbarkeit von zu erkennenden Merkmalen und dem Hintergrund verbessert. Zu den hier angewendeten Maßnahmen zählen u.a. Filteralgorithmen, eine automatische Helligkeitsanpassung und die Shadingkorrektur. Durch Erosions- und Dilatationsfunktionen werden z.B. kleine Bildstörungen unterdrückt bzw. überbrückt. Bei der Helligkeitsanpassung wird die Grundhelligkeit des Bildes aufgrund variierender Lichtverhältnisse durch wechselnde Sonneneinstrahlung oder variierende Oberflächenbeschaffenheit korrigiert. Durch die Shadingkorrektur werden Helligkeitsverläufe im Bild durch eine ungleichmäßige Beleuchtung korrigiert, so dass der Bildhintergrund mit einer konstanten Helligkeit erscheint. Auf diesem für die weitere Auswertung vorbereiteten Bild gilt es nun, das relevante Objekt zu isolieren und zu erkennen: Die häufigste Methode hierzu ist die Binarisierung des Bildes. Hierzu wird das Grauwertbild mittels einer festen oder einer in der Bildvorverarbeitung ermittelten variablen Grauwertschwelle in Objektflächen und Hintergrundflächen segmentiert. Mit z.B. einer Schwerpunktsberechnung der Fläche kann das relevante Objekt lokalisiert werden. Für die separierten Objekte werden dann Merkmale wie z.B. die Pixelanzahl von Flächen oder das Verhältnis der Achsen berechnet. Darüber hinaus können Abstände gemessen, Konturabweichungen gegenüber einem Toleranzband geprüft oder die Ausprägung einer Farbe kontrolliert werden. Durch den Vergleich der herausgearbeiteten Kriterien mit Grenzwerten kann die Klassifizierung der Objekte und dadurch die Ausgabe eines Prüfentscheides umgesetzt werden. Eine weitere Methode zum Auffinden der für die Auswertung relevanten Objekte ist die Konturauswertung. Realisiert wird dies durch eine Untersuchung des Grauwertverlaufes innerhalb des Bildes. Verändert sich der Grauwert sprunghaft deutet dies auf eine Objektkante hin. In der Auswertung dieser Linienverläufe wird die Kontur des Bauteiles ermittelt, unabhängig ob dies eine vollständige Kontur mit einem geschlossenen Linienzug ergibt oder ob es ein Konturabschnitt ist. Dadurch können auch Bauteile erkannt werden, dessen Kontur durch ein überlappendes anderes Bauteil unterbrochen wird. Bei anderen Aufgaben wiederum ist es zweckmäßig, die Objekte durch "Template Matching" direkt und ohne eine Segmentierung zu suchen. Hierzu wird eine abgespeicherte Vorlage solange nach einem vordefiniertem Algorithmus in unterschiedlichen Dreh- und Axiallagen mit dem jeweiligen Bildausschnitt verglichen, bis eine bestmögliche Übereinstimmung lokalisiert wurde oder sicher die Aussage getroffen werden kann, dass sich das gesuchte Objekt nicht in dem Bild befindet. |